Classification Periodontal Disease Classification on Dental Panoramic Image Using Deep Learning Based on ResNet50

  • Dodi Syaripudin Fakultas Kesehatan dan Teknik, Universitas Bandung, Indonesia
  • Encep Yayat Fakultas Kesehatan dan Teknik, Universitas Bandung, Indonesia
  • Jayadi Jayadi Fakultas Kesehatan dan Teknik, Universitas Bandung, Indonesia
  • Agung Rachmat Raharja Fakultas Kesehatan dan Teknik, Universitas Bandung, Indonesia
Keywords: Periodontal Disease, ResNet50, Image Classification

Abstract

This study aims to develop and evaluate a deep learning-based classification model to detect periodontal and non-periodontal diseases from dental panoramic x-ray images. The dataset used consists of panoramic images processed through a data augmentation process to increase diversity, then divided into training, validation, and testing subsets to ensure the generalization ability of the model. A transfer learning model with ResNet50 architecture was applied to utilize the optimal feature extraction capability of the medical image data. The evaluation results show that the model can distinguish between the two classes with fairly good performance, although there are indications of class bias that require further refinement. Several steps such as dataset balancing, model fine-tuning, and additional data augmentation are recommended to improve generalization and prediction accuracy. With further validation, the model is expected to become an efficient and accurate tool to support clinical analysis in periodontal disease diagnosis.

Translated with DeepL.com (free version)

References

Adolph, R. (2020). ANAMNESIS, DIAGNOSIS, TREATMENT PLANNING DAN PROGNOSIS PENYAKIT PERIODONTAL. 1–23.

Agrawal, P., & Nikhade, P. (2022). Artificial Intelligence in Dentistry: Past, Present, and Future. Cureus, 14(7). https://doi.org/10.7759/cureus.27405

Ahmad Khairul Umam. (2023). Augmentasi data pada model klasifikasi jenis vokal menggunakan CNN dengan fitur ekstraksi mel spectrogram.

Danial, N. H., & Setiawati, D. (2024). Convolutional Neural Network (Cnn) Based on Artificial Intelligence in Periodontal Diseases Diagnosis. Interdental Jurnal Kedokteran Gigi (IJKG), 20(1), 139–148. https://doi.org/10.46862/interdental.v20i1.8641

Duta, I. C., Liu, L., Zhu, F., & Shao, L. (2020). Improved residual networks for image and video recognition. Proceedings - International Conference on Pattern Recognition, 9415–9422. https://doi.org/10.1109/ICPR48806.2021.9412193

Dwisatya Ramadhani, A., Rudhanton, R., Diah, D., & Sutanti, V. (2022). UJI EFEKTIVITAS ANTIBAKTERI LARUTAN MADU LEBAH BARAT (Apis mellifera) TERHADAP BAKTERI Porphyromonas gingivalis SECARA IN VITRO dengan METODE DILUSI AGAR. E-Prodenta Journal of Dentistry, 6(1), 540–546. https://doi.org/10.21776/ub.eprodenta.2020.006.01.2

J. D. Manson, & B. M. Eley. (2023). Etiologi Penyakit Periodontal.

Kabir, T., Lee, C. T., Nelson, J., Sheng, S., Meng, H. W., Chen, L., Walji, M. F., Jiang, X., & Shams, S. (2021). An End-to-end Entangled Segmentation and Classification Convolutional Neural Network for Periodontitis Stage Grading from Periapical Radiographic Images. Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021, 1370–1375. https://doi.org/10.1109/BIBM52615.2021.9669422

Kim, J., Lee, H. S., Song, I. S., & Jung, K. H. (2019). DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-53758-2

Li, W., Liang, Y., Zhang, X., Liu, C., He, L., Miao, L., & Sun, W. (2021). A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-96091-3

Nariratih, D., Rusjanti, J., & Susanto, A. (2011). Prevalence and characteristics of aggressive periodontitis. Padjadjaran Journal of Dentistry, 23(2), 97–104. https://doi.org/10.24198/pjd.vol23no2.14020

Pranata, N. (2019). Dental Calculus as The Unique Calcified Oral Ecosystem A Review Article. Oceana Biomedicina Journal, 2(2), 52–65. https://doi.org/10.30649/obj.v2i2.28

Prasetya, M. R. A., Hidayat, A., Teknologi, S., Informasi, S., Mulia, U. S., Teknologi, S., Informasi, T., & Mulia, U. S. (2023). Klasifikasi Jerawat dengan Deep Learning Berbasis Convolutional Neural Network. Jurnal TEKNO KOMPAK, 19(1), 37–49.

Putri Ayuni, D., Jasril, Irsyad, M., Yanto, F., & Sanjaya, S. (2023). Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi. ZONAsi: Jurnal Sistem Informasi, 5(2), 239–249. https://doi.org/10.31849/zn.v5i2.13874

Ryandra, M. F. D. (2022). Perbandingan Arsitektur Resnet-50 dan Inceptionv3 dalam Klasifikasi Covid 19 Berdasarkan Citra X Ray. 35. https://repositori.uma.ac.id/handle/123456789/17072%0Ahttps://repositori.uma.ac.id/jspui/bitstream/123456789/17072/1/178160047 - Muhammad Farhan Dwi Ryandra - Fulltext.pdf

Ryu, J., Lee, D. M., Jung, Y. H., Kwon, O. J., Park, S. Y., Hwang, J. J., & Lee, J. Y. (2023). Automated Detection of Periodontal Bone Loss Using Deep Learning and Panoramic Radiographs: A Convolutional Neural Network Approach. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095261

Schwendicke, F., Samek, W., & Krois, J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99(7), 769–774. https://doi.org/10.1177/0022034520915714

Shaikh, K., Bekal, S. V., Ahmed Marei, H. F., Moustafa Elsayed, W. S., Surdilovic, D., & Jawad, L. A. (2022). Artificial Intelligence in Dentistry. Artificial Intelligence in Dentistry, 20(11), 1–198. https://doi.org/10.1007/978-3-031-19715-4

Suprihanto, S., Awaludin, I., Fadhil, M., & Zulfikor, M. A. Z. (2022). Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. Jurnal Informatika, 9(2), 116–122. https://doi.org/10.31294/inf.v9i1.13049

Sutisna, T., Raharja, A. R., Hariyadi, E., Hafizh, V., & Putra, C. (2024). Penggunaan Computer Vision untuk Menghitung Jumlah Kendaraan dengan Menggunakan Metode SSD ( Single Shoot Detector ). Journal Of Social Science Research Volume, 4, 6060–6067. https://doi.org/10.31004/innovative.v4i2.10071

Published
2025-02-27
How to Cite
Syaripudin, D., Yayat, E., Jayadi, J., & Raharja, A. R. (2025). Classification Periodontal Disease Classification on Dental Panoramic Image Using Deep Learning Based on ResNet50. SisInfo, 7(1), 50-61. https://doi.org/10.37278/sisinfo.v7i1.1063
Section
Articles