Classification Periodontal Disease Classification on Dental Panoramic Image Using Deep Learning Based on ResNet50
Abstract
This study aims to develop and evaluate a deep learning-based classification model to detect periodontal and non-periodontal diseases from dental panoramic x-ray images. The dataset used consists of panoramic images processed through a data augmentation process to increase diversity, then divided into training, validation, and testing subsets to ensure the generalization ability of the model. A transfer learning model with ResNet50 architecture was applied to utilize the optimal feature extraction capability of the medical image data. The evaluation results show that the model can distinguish between the two classes with fairly good performance, although there are indications of class bias that require further refinement. Several steps such as dataset balancing, model fine-tuning, and additional data augmentation are recommended to improve generalization and prediction accuracy. With further validation, the model is expected to become an efficient and accurate tool to support clinical analysis in periodontal disease diagnosis.
Translated with DeepL.com (free version)
References
Adolph, R. (2020). ANAMNESIS, DIAGNOSIS, TREATMENT PLANNING DAN PROGNOSIS PENYAKIT PERIODONTAL. 1–23.
Agrawal, P., & Nikhade, P. (2022). Artificial Intelligence in Dentistry: Past, Present, and Future. Cureus, 14(7). https://doi.org/10.7759/cureus.27405
Ahmad Khairul Umam. (2023). Augmentasi data pada model klasifikasi jenis vokal menggunakan CNN dengan fitur ekstraksi mel spectrogram.
Danial, N. H., & Setiawati, D. (2024). Convolutional Neural Network (Cnn) Based on Artificial Intelligence in Periodontal Diseases Diagnosis. Interdental Jurnal Kedokteran Gigi (IJKG), 20(1), 139–148. https://doi.org/10.46862/interdental.v20i1.8641
Duta, I. C., Liu, L., Zhu, F., & Shao, L. (2020). Improved residual networks for image and video recognition. Proceedings - International Conference on Pattern Recognition, 9415–9422. https://doi.org/10.1109/ICPR48806.2021.9412193
Dwisatya Ramadhani, A., Rudhanton, R., Diah, D., & Sutanti, V. (2022). UJI EFEKTIVITAS ANTIBAKTERI LARUTAN MADU LEBAH BARAT (Apis mellifera) TERHADAP BAKTERI Porphyromonas gingivalis SECARA IN VITRO dengan METODE DILUSI AGAR. E-Prodenta Journal of Dentistry, 6(1), 540–546. https://doi.org/10.21776/ub.eprodenta.2020.006.01.2
J. D. Manson, & B. M. Eley. (2023). Etiologi Penyakit Periodontal.
Kabir, T., Lee, C. T., Nelson, J., Sheng, S., Meng, H. W., Chen, L., Walji, M. F., Jiang, X., & Shams, S. (2021). An End-to-end Entangled Segmentation and Classification Convolutional Neural Network for Periodontitis Stage Grading from Periapical Radiographic Images. Proceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021, 1370–1375. https://doi.org/10.1109/BIBM52615.2021.9669422
Kim, J., Lee, H. S., Song, I. S., & Jung, K. H. (2019). DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-53758-2
Li, W., Liang, Y., Zhang, X., Liu, C., He, L., Miao, L., & Sun, W. (2021). A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Scientific Reports, 11(1), 1–8. https://doi.org/10.1038/s41598-021-96091-3
Nariratih, D., Rusjanti, J., & Susanto, A. (2011). Prevalence and characteristics of aggressive periodontitis. Padjadjaran Journal of Dentistry, 23(2), 97–104. https://doi.org/10.24198/pjd.vol23no2.14020
Pranata, N. (2019). Dental Calculus as The Unique Calcified Oral Ecosystem A Review Article. Oceana Biomedicina Journal, 2(2), 52–65. https://doi.org/10.30649/obj.v2i2.28
Prasetya, M. R. A., Hidayat, A., Teknologi, S., Informasi, S., Mulia, U. S., Teknologi, S., Informasi, T., & Mulia, U. S. (2023). Klasifikasi Jerawat dengan Deep Learning Berbasis Convolutional Neural Network. Jurnal TEKNO KOMPAK, 19(1), 37–49.
Putri Ayuni, D., Jasril, Irsyad, M., Yanto, F., & Sanjaya, S. (2023). Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi. ZONAsi: Jurnal Sistem Informasi, 5(2), 239–249. https://doi.org/10.31849/zn.v5i2.13874
Ryandra, M. F. D. (2022). Perbandingan Arsitektur Resnet-50 dan Inceptionv3 dalam Klasifikasi Covid 19 Berdasarkan Citra X Ray. 35. https://repositori.uma.ac.id/handle/123456789/17072%0Ahttps://repositori.uma.ac.id/jspui/bitstream/123456789/17072/1/178160047 - Muhammad Farhan Dwi Ryandra - Fulltext.pdf
Ryu, J., Lee, D. M., Jung, Y. H., Kwon, O. J., Park, S. Y., Hwang, J. J., & Lee, J. Y. (2023). Automated Detection of Periodontal Bone Loss Using Deep Learning and Panoramic Radiographs: A Convolutional Neural Network Approach. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095261
Schwendicke, F., Samek, W., & Krois, J. (2020). Artificial Intelligence in Dentistry: Chances and Challenges. Journal of Dental Research, 99(7), 769–774. https://doi.org/10.1177/0022034520915714
Shaikh, K., Bekal, S. V., Ahmed Marei, H. F., Moustafa Elsayed, W. S., Surdilovic, D., & Jawad, L. A. (2022). Artificial Intelligence in Dentistry. Artificial Intelligence in Dentistry, 20(11), 1–198. https://doi.org/10.1007/978-3-031-19715-4
Suprihanto, S., Awaludin, I., Fadhil, M., & Zulfikor, M. A. Z. (2022). Analisis Kinerja ResNet-50 dalam Klasifikasi Penyakit pada Daun Kopi Robusta. Jurnal Informatika, 9(2), 116–122. https://doi.org/10.31294/inf.v9i1.13049
Sutisna, T., Raharja, A. R., Hariyadi, E., Hafizh, V., & Putra, C. (2024). Penggunaan Computer Vision untuk Menghitung Jumlah Kendaraan dengan Menggunakan Metode SSD ( Single Shoot Detector ). Journal Of Social Science Research Volume, 4, 6060–6067. https://doi.org/10.31004/innovative.v4i2.10071
Copyright (c) 2025 Dodi Syaripudin, Encep Yayat, Jayadi Jayadi, Agung Rachmat Raharja

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish articles in SisInfo : Jurnal Sistem Informasi dan Informatika agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).