Intrusion Detection System Menggunakan Snort dan Telegram Sebagai Media Notifikasi

  • Danu Satin S Fakultas Teknologi Informasi, Universitas Serang Raya
  • Wahyuddin Wahyuddin Universitas Serang Raya
  • Ahmad Kautsar Fakultas Teknologi Informasi, Universitas Serang Raya
  • Agus Setyawan Fakultas Teknologi Informasi, Universitas Serang Raya
Keywords: Inteusion Detection System, IDS, Snort, Network Security, Cyberattacks

Abstract

 

Intrusion Detection System (IDS) is a device or mechanism designed to monitor, analyze, and detect suspicious activities within a network or computer system, protecting IT infrastructure from security threats such as cyberattacks and unauthorized access. Snort, as one of the IDS solutions, is capable of analyzing network traffic in real-time and detecting various threats, including buffer overflow, port scanning, and DoS attacks. This study employs a combination of hardware and software implemented in a computer network. Initial testing utilized Telegram Bot integration to deliver attack notifications, while the final testing evaluated Snort's capability to detect other types of attacks, such as DoS, FTP login, and port scanning. The results demonstrate that the Snort IDS effectively detects various types of attacks with different attacker operating systems, including Port Scan, Ping of Death, FTP, TCP Synflood, and Denial of Service attacks. These findings establish Snort as an essential solution for enhancing network security in the digital era.

References

Abdulrezzak, S., & Sabir, F. (2023). An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers. Journal of Engineering. https://doi.org/10.31026/j.eng.2023.02.11

Alviana, S., & Sumitra, I. (2018). Analisis pengukuran penggunaan sumber daya komputer pada intrusion detection system dalam meminimalkan serangan jaringan. Komputa Jurnal Ilmiah Komputer Dan Informatika, 7(1), 27–34. https://doi.org/10.34010/komputa.v7i1.2533

Chen. (2024). A Case Study of Network-Based Intrusion Detection System Deployment in Industrial Control Systems with Network Isolation. Proceedings of International Conference on Artificial Life and Robotics. https://doi.org/10.5954/icarob.2024.os1-5

Chouikik, M., Ouaissa, M., Ouaissa, M., Boulouard, Z., & Kissi, M. (2024). Detection and Mitigation of DDoS Attacks in SDN Based Intrusion Detection System. Bulletin of Electrical Engineering and Informatics, 13(4), 2750–2757. https://doi.org/10.11591/eei.v13i4.7570

Dharma. (2023). Network Attack Detection Using Intrusion Detection System Utilizing Snort Based on Telegram. Bit-Tech. https://doi.org/10.32877/bt.v6i2.943

Ho, S., Al-Jufout, S., Dajani, K., & Mozumdar, M. (2021). A novel intrusion detection model for detecting known and innovative cyberattacks using convolutional neural network. IEEE Open Journal of the Computer Society, 2, 14–25. https://doi.org/10.1109/ojcs.2021.3050917

Hu, & al., et. (2020). Analysing performance issues of open-source intrusion detection systems in high-speed networks. Journal of Information Security and Applications. https://doi.org/10.1016/j.jisa.2019.102426

Jain, J., & Waoo, A. (2023). An artificial neural network technique for prediction of cyber-attack using intrusion detection system. Journal of Artificial Intelligence Machine Learning and Neural Network, 32, 33–42. https://doi.org/10.55529/jaimlnn.32.33.42

Khraisat, & al., et. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity. https://doi.org/10.1186/s42400-019-0038-7

Majidpour, J., & Hasanzadeh, H. (2020). Application of deep learning to enhance the accuracy of intrusion detection in modern computer networks. Bulletin of Electrical Engineering and Informatics, 9(3), 1137–1148. https://doi.org/10.11591/eei.v9i3.1724

Maulani, I. (2023). Sistem deteksi intrusi cerdas: studi perbandingan algoritma pembelajaran mesin untuk keamanan siber. Jurnal Sosial Teknologi, 3(11), 918–923. https://doi.org/10.59188/jurnalsostech.v3i11.987

Muhammad. (2023). Implementation of IDS Using Snort with Barnyard2 Visualization for Network Monitoring in The Informatics Engineering Computer Lab at Muhammadiyah University Surakarta. International Journal of Computer and Information System (IJCIS). https://doi.org/10.29040/ijcis.v4i4.142

Pramila, P., & Gayathri, M. (2022). Analysis of accuracy in anomaly detection of intrusion detection system using naïve bayes algorithm compared over gaussian model. ECS Transactions, 107(1), 13977–13991. https://doi.org/10.1149/10701.13977ecst

Purnama, T. (2023). Implementasi intrusion detection system (ids) snort sebagai sistem keamanan menggunakan whatsapp dan telegram sebagai media notifikasi. Jurnal Teknologi Informasi Dan Komunikasi, 14(2), 358–369. https://doi.org/10.51903/jtikp.v14i2.726

Putri, N., Zulianto, A., & Suwarningsih, W. (2021). Deteksi intrusi pada basis data menggunakan random forest. Jurnal ICT Information Communication & Technology, 20(2), 387–393. https://doi.org/10.36054/jict-ikmi.v20i2.424

Riza, F. (2022). Sistem deteksi intrusi pada server secara realtime menggunakan seleksi fitur dan firebase cloud messaging. Jurnal Sistim Informasi Dan Teknologi. https://doi.org/10.37034/jsisfotek.v5i1.161

Shah, & Issac. (2018). Performance comparison of intrusion detection systems and application of machine learning to Snort system. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.10.016

Simanjuntak, R. (2024). Meningkatkan keamanan siber dalam lingkungan internet of things (iot) dengan menggunakan sistem deteksi intrusi berbasis pembelajaran mesin. DIKE, 2(2), 62–68. https://doi.org/10.69688/dike.v2i2.106

Tasneem, & al., et. (2018). Intrusion Detection Prevention System using SNORT. International Journal of Computer Applications. https://doi.org/10.5120/ijca2018918280

Widiyanto, W. W. (2022). SIMRS Network Security Simulation Using Snort IDS and IPS Methods. Indonesian of Health Information Management Journal (INOHIM), 10(1), 10–17. https://doi.org/10.47007/inohim.v10i1.396

Widodo, T., & Aji, A. (2022). Pemanfaatan network forensic investigation framework untuk mengidentifikasi serangan jaringan melalui intrusion detection system (ids). JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 46–55. https://doi.org/10.14421/jiska.2022.7.1.46-55

Zhu, L. (2019). A new intrusion detection and alarm correlation technology based on neural network. EURASIP Journal on Wireless Communications and Networking, 2019(1). https://doi.org/10.1186/s13638-019-1419-z

Published
2025-02-27
How to Cite
S, D. S., Wahyuddin, W., Kautsar, A., & Setyawan, A. (2025). Intrusion Detection System Menggunakan Snort dan Telegram Sebagai Media Notifikasi. SisInfo, 7(1), 40-49. https://doi.org/10.37278/sisinfo.v7i1.1068
Section
Articles