Intrusion Detection System Menggunakan Snort dan Telegram Sebagai Media Notifikasi
Abstract
Intrusion Detection System (IDS) is a device or mechanism designed to monitor, analyze, and detect suspicious activities within a network or computer system, protecting IT infrastructure from security threats such as cyberattacks and unauthorized access. Snort, as one of the IDS solutions, is capable of analyzing network traffic in real-time and detecting various threats, including buffer overflow, port scanning, and DoS attacks. This study employs a combination of hardware and software implemented in a computer network. Initial testing utilized Telegram Bot integration to deliver attack notifications, while the final testing evaluated Snort's capability to detect other types of attacks, such as DoS, FTP login, and port scanning. The results demonstrate that the Snort IDS effectively detects various types of attacks with different attacker operating systems, including Port Scan, Ping of Death, FTP, TCP Synflood, and Denial of Service attacks. These findings establish Snort as an essential solution for enhancing network security in the digital era.
References
Abdulrezzak, S., & Sabir, F. (2023). An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers. Journal of Engineering. https://doi.org/10.31026/j.eng.2023.02.11
Alviana, S., & Sumitra, I. (2018). Analisis pengukuran penggunaan sumber daya komputer pada intrusion detection system dalam meminimalkan serangan jaringan. Komputa Jurnal Ilmiah Komputer Dan Informatika, 7(1), 27–34. https://doi.org/10.34010/komputa.v7i1.2533
Chen. (2024). A Case Study of Network-Based Intrusion Detection System Deployment in Industrial Control Systems with Network Isolation. Proceedings of International Conference on Artificial Life and Robotics. https://doi.org/10.5954/icarob.2024.os1-5
Chouikik, M., Ouaissa, M., Ouaissa, M., Boulouard, Z., & Kissi, M. (2024). Detection and Mitigation of DDoS Attacks in SDN Based Intrusion Detection System. Bulletin of Electrical Engineering and Informatics, 13(4), 2750–2757. https://doi.org/10.11591/eei.v13i4.7570
Dharma. (2023). Network Attack Detection Using Intrusion Detection System Utilizing Snort Based on Telegram. Bit-Tech. https://doi.org/10.32877/bt.v6i2.943
Ho, S., Al-Jufout, S., Dajani, K., & Mozumdar, M. (2021). A novel intrusion detection model for detecting known and innovative cyberattacks using convolutional neural network. IEEE Open Journal of the Computer Society, 2, 14–25. https://doi.org/10.1109/ojcs.2021.3050917
Hu, & al., et. (2020). Analysing performance issues of open-source intrusion detection systems in high-speed networks. Journal of Information Security and Applications. https://doi.org/10.1016/j.jisa.2019.102426
Jain, J., & Waoo, A. (2023). An artificial neural network technique for prediction of cyber-attack using intrusion detection system. Journal of Artificial Intelligence Machine Learning and Neural Network, 32, 33–42. https://doi.org/10.55529/jaimlnn.32.33.42
Khraisat, & al., et. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity. https://doi.org/10.1186/s42400-019-0038-7
Majidpour, J., & Hasanzadeh, H. (2020). Application of deep learning to enhance the accuracy of intrusion detection in modern computer networks. Bulletin of Electrical Engineering and Informatics, 9(3), 1137–1148. https://doi.org/10.11591/eei.v9i3.1724
Maulani, I. (2023). Sistem deteksi intrusi cerdas: studi perbandingan algoritma pembelajaran mesin untuk keamanan siber. Jurnal Sosial Teknologi, 3(11), 918–923. https://doi.org/10.59188/jurnalsostech.v3i11.987
Muhammad. (2023). Implementation of IDS Using Snort with Barnyard2 Visualization for Network Monitoring in The Informatics Engineering Computer Lab at Muhammadiyah University Surakarta. International Journal of Computer and Information System (IJCIS). https://doi.org/10.29040/ijcis.v4i4.142
Pramila, P., & Gayathri, M. (2022). Analysis of accuracy in anomaly detection of intrusion detection system using naïve bayes algorithm compared over gaussian model. ECS Transactions, 107(1), 13977–13991. https://doi.org/10.1149/10701.13977ecst
Purnama, T. (2023). Implementasi intrusion detection system (ids) snort sebagai sistem keamanan menggunakan whatsapp dan telegram sebagai media notifikasi. Jurnal Teknologi Informasi Dan Komunikasi, 14(2), 358–369. https://doi.org/10.51903/jtikp.v14i2.726
Putri, N., Zulianto, A., & Suwarningsih, W. (2021). Deteksi intrusi pada basis data menggunakan random forest. Jurnal ICT Information Communication & Technology, 20(2), 387–393. https://doi.org/10.36054/jict-ikmi.v20i2.424
Riza, F. (2022). Sistem deteksi intrusi pada server secara realtime menggunakan seleksi fitur dan firebase cloud messaging. Jurnal Sistim Informasi Dan Teknologi. https://doi.org/10.37034/jsisfotek.v5i1.161
Shah, & Issac. (2018). Performance comparison of intrusion detection systems and application of machine learning to Snort system. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.10.016
Simanjuntak, R. (2024). Meningkatkan keamanan siber dalam lingkungan internet of things (iot) dengan menggunakan sistem deteksi intrusi berbasis pembelajaran mesin. DIKE, 2(2), 62–68. https://doi.org/10.69688/dike.v2i2.106
Tasneem, & al., et. (2018). Intrusion Detection Prevention System using SNORT. International Journal of Computer Applications. https://doi.org/10.5120/ijca2018918280
Widiyanto, W. W. (2022). SIMRS Network Security Simulation Using Snort IDS and IPS Methods. Indonesian of Health Information Management Journal (INOHIM), 10(1), 10–17. https://doi.org/10.47007/inohim.v10i1.396
Widodo, T., & Aji, A. (2022). Pemanfaatan network forensic investigation framework untuk mengidentifikasi serangan jaringan melalui intrusion detection system (ids). JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 46–55. https://doi.org/10.14421/jiska.2022.7.1.46-55
Zhu, L. (2019). A new intrusion detection and alarm correlation technology based on neural network. EURASIP Journal on Wireless Communications and Networking, 2019(1). https://doi.org/10.1186/s13638-019-1419-z
Copyright (c) 2025 Danu Satin S, Wahyuddin Wahyuddin, Ahmad Kautsar, Agus Setyawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish articles in SisInfo : Jurnal Sistem Informasi dan Informatika agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).