Implementasi K-Nearest Neighbor untuk Prediksi Harga Bibit Kelapa Sawit dengan Metode CRISP-DM

  • Reni Nursyanti Informatika, Fakultas Teknologi Dan Informatika, Universitas Informatika Dan Bisnis Indonesia
  • Graha Prakarsa Sistem Informasi, Fakultas Teknologi Dan Informatika, Universitas Informatika Dan Bisnis Indonesia
  • Siti Nuraini Rahmawati Sistem Informasi, Fakultas Teknologi Dan Informatika, Universitas Informatika Dan Bisnis Indonesia
  • Agung Andriana Sistem Informasi, Fakultas Sain Dan Teknologi, Universitas Terbuka

Abstract

Oil palm is the most productive vegetable oil producing crop and plays an important role in the Indonesian economy. However, fluctuations in the price of oil palm seedlings are a challenge for the Oil Palm Research Center (PPKS) Sungai Lilin Plantation due to the imbalance between demand and production. This study aims to predict the price of oil palm seedlings using the K-Nearest Neighbor (KNN) algorithm with the Cross-Industry Standard Process for Data Mining (CRISP-DM) approach. The dataset used consists of 2,049 records, with a division of 80% training data and 20% test data. With a value of k = 5, the KNN model produces 99.21% accuracy, with 3 misclassified data and 1,626 correct data. The prediction results show a price category of “EXPENSIVE”. This study proves that the KNN method is effective in predicting the price of oil palm seedlings, so it can help stakeholders in decision-making and business strategy

References

Setiawan, A., & Sari, R. E. (2018). Penerapan Metode Profile Maching Sebagai Penyortiran Bibit Kelapa Sawit. Jurnal Informatika Kaputama (JIK), 2(2), 71-81.

Ikhlas, M. (2019). Penerapan metode mfep (multifactor evaluation process) dalam pengambilan keputusan pemilihan bibit kelapa sawit terbaik. Jurnal Sains dan Teknologi, 19(1).

Budiman dkk, (2020). Data mining implementation using naïve bayes algorithm and decision tree J48 in determining concentration selection, International Journal of Quantitative Research and Modeling 1 (3), 123-134

Virdaus, D., & Prasetyaningrum, P. T. (2020). Penerapan Data Mining Untuk Memprediksi Harga Bawang Merah Di Yogyakarta Menggunakan Metode K-Nearest Neighbor. Journal Of …, 84, 1–8.

Yahya, Y., & Puspita Hidayanti, W. (2020). Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada “Lombok Vape On.” Infotek : Jurnal Informatika Dan Teknologi, 3(2), 104–114.

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-Sakti), 5(2), 697–711.

Tyo Anggin Virnand, (2021) Penerapan Algoritma K-Nearest Neighbor (K-Nn) Pada Klasifikasi Kualitas Hasil Pengeringan Bunga Cengkih

Munawwaroh, D. A., & Primandari, A. H. (2022). Implementasi Crisp-Dm Model Menggunakan Metode Decision Tree Dengan Algoritma Cart Untuk Prediksi Lila Ibu Hamil Berpotensi Gizi Kurang. Delta: Jurnal Ilmiah Pendidikan Matematika, 10(2), 367-380.

Suryadi, L., Pratiwi, N. E., Ardhy, F., & Riswanto, P. (2022). Penerapan Data Mining Prediksi Penjualan Mebel Terlaris Menggunakan Metode K-Nearest Neighbor (K-Nn)(Studi Kasus: Toko Zerita Meubel). JUSIM (Jurnal Sistem Informasi Musirawas), 7(2), 174-184.

Zaien Bin Umar Alaydrus, Arief Andy Soebroto, (2023) Klasifikasi Masa Panen Varietas Unggul Kedelai menggunakan K-Nearest Neighbor

Yudiana, Y., Agustina, A. Y., & Khofifah, N. (2023). Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan. Indonesian Journal of Islamic Economics and Business, 8(1), 1-20

Kurniawan, I., Rahaningsih, N., & Suprapti, T. (2024). IMPLEMENTASI ALGORITMA REGRESI LINIER DAN K-NEAREST NEIGHBOR UNTUK PREDIKSI HARGA RUMAH. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 1187-1193.

Lalapa, N. M. (2023). Implementasi Metode Regresi Linear Sederhana Untuk Prediksi Harga Cabai Rawit. Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer, 2(2), 96-103.

Lo, A. A. P., & Tjioe, V. J. E. (2024, September). Penerapan Model CRISP-DM untuk Prediksi Penyakit Diabetes Menggunakan Metode K-Nearest Neighbor dan Logistic regression. In Prosiding Seminar Nasional Universitas Ma Chung (Informatika & Sistem Informasi; Bahasa dan Seni; Farmasi) (Vol. 4, pp. 48-57).

Yulianto, K. E., & Christy, V. M. (2024, September). Prediksi Kualitas Air di Jawa Timur Menggunakan Metode CRISP-DM dengan Algoritma K-NN dan Regresi Logistik Multinomial. In Prosiding Seminar Nasional Universitas Ma Chung (Informatika & Sistem Informasi; Bahasa dan Seni; Farmasi) (Vol. 4, pp. 16-24).

Dewi, S. P., Nurwati, N., & Rahayu, E. (2022). Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor. Building of Informatics, Technology and Science (BITS), 3(4), 639-648.

Bahtiar, R. (2023). Implementasi Data Mining Untuk Prediksi Penjualan Kusen Terlaris Menggunakan Metode K-Nearest Neighbor. Jurnal Informatika MULTI, 1(3), 203-214.

Published
2025-02-27
How to Cite
Nursyanti, R., Prakarsa, G., Rahmawati, S. N., & Andriana, A. (2025). Implementasi K-Nearest Neighbor untuk Prediksi Harga Bibit Kelapa Sawit dengan Metode CRISP-DM. SisInfo, 7(1), 124-134. https://doi.org/10.37278/sisinfo.v7i1.1122
Section
Articles