Analisis Sentimen Menggunakan Metode Klasifikasi Support Vector Machine (SVM) dan Seleksi Fitur Chi-Square
Abstract
Analisis sentimen adalah teknik komputasi untuk mengidentifikasi opini, sikap, emosi, dan maksud seseorang terhadap suatu subjek melalui ulasan yang diberikan. Studi sebelumnya menunjukkan teknik analisis sentimen menggunakan machine learning, seperti metode klasifikasi Support Vector Machine (SVM) telah terbukti efektif dalam mengklasifikasi opini. Penerapan metode seleksi fitur dapat meningkatkan performa model dan efisiensi model. Salah satu metode yang sering digunakan untuk seleksi fitur adalah metode Chi-Square. Penelitian ini bertujuan untuk memperoleh model SVM dari data teks yang telah melewati tahap seleksi fitur Chi-Square. Analisis sentimen dilakukan dengan kerangka kerja yang terdiri dari text preprocessing, representasi kata Term Frequency Inverse Document Frequency (TF-IDF), seleksi fitur Chi-Square, klasifikasi menggunakan metode SVM, evaluasi performa model, dan hyperparameter tuning.
Copyright (c) 2023 Ewen Hokijuliandy, Herlina Napitupulu, Firdaniza Firdaniza

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish articles in SisInfo : Jurnal Sistem Informasi dan Informatika agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).